Introduction#

Preamble#

The data analysis process is a series of steps that are used to organize, clean, and analyze data. The process is used to extract useful information from the data and to make decisions based on the data. The process is used in a variety of fields, including business, science, and engineering. The process is typically broken down into several steps, including data collection, data cleaning, data analysis, and data visualization.

Data Lifecycle

The scope of this notebook is to provide a brief introduction to the data analysis process using the Python programming language and the Pandas library (https://pandas.pydata.org/). Pandas is a powerful data manipulation library for Python that provides data structures and functions for working with structured data. It also provides basic tools for data visualization, but the use of more powerful libraries like Matplotlib or Seaborn is recommended for more complex visualizations.

For data manipulation, we make the choice to work with Pandas; other libraries like NumPy, SciPy, and Scikit-learn are also commonly used for data analysis.

Objectives#

in this notebook, we will cover the following topics:

  • Data Laoding

  • Data Manipulation

  • Data Visualization

  • Data Analysis / data modeling

We will use as example data set a list of students with their grades in different tests.

Hide code cell source
# Setup
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl

First of all, let’s have a look at the data set#

For that you need to open the data set in is native format, in this case a csv file. csv files are text files that store data in a tabular format, with each row representing a record and each column representing a field. Therefore, you can open the file with a text editor or a spreadsheet software like Excel.

Required files

The data set is available in the _DATA folder attached to this notebook.

warning

Open the data with Excel might change the format of the data, so it is recommended to use a text editor like Notepad++ or Visual Studio Code.

Data Loading and basic manipulation#

Load data and create a data frame from csv file#

More explanation can be found here : https://chrisalbon.com/python/data_wrangling/pandas_dataframe_importing_csv/

df = pd.read_csv("./_DATA/Note_csv.csv", delimiter=";")
df
section TD name ET CC
0 MM A ami 14.50 11.75
1 MM A joyce 8.50 11.50
2 MM C lola 9.50 13.25
3 MM B irma 7.50 6.00
4 IAI D florence 14.50 13.25
... ... ... ... ... ...
90 MM A james 13.75 12.75
91 IAI D richard 15.25 7.00
92 MM A caprice 18.25 15.00
93 IAI D al 12.50 9.75
94 MM B constance 3.00 7.00

95 rows × 5 columns

Display the dataframe#

# return the beginning of the dataframe
df = df.fillna(0.0)
df.head(10)
section TD name ET CC
0 MM A ami 14.50 11.75
1 MM A joyce 8.50 11.50
2 MM C lola 9.50 13.25
3 MM B irma 7.50 6.00
4 IAI D florence 14.50 13.25
5 MM B vi 11.00 7.50
6 MM B brian 14.00 16.25
7 MM B antoinette 14.50 17.00
8 IAI D fred 9.50 11.50
9 IAI D gaston 12.25 5.75
# return the end of the dataframe
df.tail(10)
section TD name ET CC
85 MM A vin 11.00 13.00
86 MM A jeunesse 12.00 10.50
87 MM A victoire 11.75 12.00
88 MM B joseph 8.00 10.00
89 MM A fꭩx 13.00 14.50
90 MM A james 13.75 12.75
91 IAI D richard 15.25 7.00
92 MM A caprice 18.25 15.00
93 IAI D al 12.50 9.75
94 MM B constance 3.00 7.00

Selecting data in a dataframe#

# get data from index 2
df.loc[2]
section       MM
TD             C
name        lola
ET           9.5
CC         13.25
Name: 2, dtype: object
# get name from index 2
df.name[2]
'lola'
# Sliccing is also working

df.name[2:6]
2        lola
3        irma
4    florence
5          vi
Name: name, dtype: object

Get one of row of the dataframe#

df.TD
0     A
1     A
2     C
3     B
4     D
     ..
90    A
91    D
92    A
93    D
94    B
Name: TD, Length: 95, dtype: object

Start to do some basic analysis and visualization#

Get the number of students in each group.#

df.TD.value_counts()
B    25
A    24
C    23
D    23
Name: TD, dtype: int64

Get the proportion of students between groups#

df.TD.value_counts(normalize=True)
B    0.263158
A    0.252632
C    0.242105
D    0.242105
Name: TD, dtype: float64

Display the proportion of students between groups#

Using the plot function of panda:

visualization option of pandas can be found here : http://pandas.pydata.org/pandas-docs/version/0.18/visualization.html

fig = plt.figure()
df.TD.value_counts(normalize=True).plot.pie(
    labels=["A", "B", "C", "D"], colors=["r", "g", "b", "y"], autopct="%.1f"
)
plt.show()
../../_images/462ee52c2ce2d33efed82751c2543f69e33963d0cb332eecd636b8d7b5234880.png

Using the plot function of matplotlib:

val = df.TD.value_counts(normalize=True).values
explode = (0.5, 0, 0.2, 0)
labels = "A", "B", "C", "D"
fig1, ax1 = plt.subplots()
ax1.pie(
    val, explode=explode, labels=labels, autopct="%1.1f%%", shadow=True, startangle=90
)
ax1.axis("equal")  # Equal aspect ratio ensures that pie is drawn as a circle.

plt.show()
../../_images/2ca5bab4802f7670a4fc608d3c44b9df7c9a8cf393e8455cef2777f9c5881039.png

Get student list who get a grad higher than 14/20 on both ET and CC#

df[(df.ET > 14.0) & (df.CC > 14.0)]
section TD name ET CC
7 MM B antoinette 14.50 17.0
16 MM C louis 17.50 15.5
77 MM C karl 14.50 17.5
81 MM B mari 15.00 15.0
82 IAI C rose 17.50 15.0
92 MM A caprice 18.25 15.0

Make Calculation on Data#

The mean of ET grads over all students#

df.ET.mean()
10.810526315789474

The mean of ET over students from B group#

df.ET[df.TD == "B"].mean()
9.72

Statistical description of the data by TD using the ‘groupby()’ function#

df.groupby(["TD"]).describe()  # compte the mean of each note for each groupe
ET CC
count mean std min 25% 50% 75% max count mean std min 25% 50% 75% max
TD
A 24.0 12.552083 2.953424 4.5 11.5625 12.875 14.125 18.25 24.0 12.531250 2.350199 7.50 11.4375 12.75 13.625 17.50
B 25.0 9.720000 3.445498 3.0 7.5000 9.500 13.000 15.50 25.0 9.690000 3.906645 0.00 7.5000 10.25 11.750 17.00
C 23.0 10.630435 4.295128 1.0 7.5000 9.500 14.500 17.50 23.0 11.913043 2.903376 6.50 9.8750 12.00 13.750 17.50
D 23.0 10.358696 5.376097 0.0 6.7500 11.750 14.500 17.75 23.0 9.076087 3.244256 0.25 8.1250 10.00 11.125 13.25

Display the grads with a histogram plot#

# CC notes
fig = plt.figure()
df.CC.plot.hist(alpha=0.5, bins=np.arange(1, 20))
plt.show()
../../_images/90cc441c31cec7926be5e3a859fc90bb6f146e213988687740af6ca067108ce7.png
# ET notes
fig = plt.figure()
df.ET.plot.hist(alpha=0.5, bins=np.arange(1, 20))
plt.show()
../../_images/6ece28f8746744e145a884c54a68bf1a18a50ae80d2246109373820557e942f5.png
fig = plt.figure()
df.plot.hist(alpha=0.5, bins=np.arange(1, 20))
plt.show()
<Figure size 640x480 with 0 Axes>
../../_images/c7053b34d54275bf6b47e9b4a2fb38355386b38a0c9f779401c8ce78a11d2557.png

Let’s compute the mean of both grads#

We need first to add a new row to a data frame#

df["FinalNote"] = 0.0  # add  row filled with 0.0
df
section TD name ET CC FinalNote
0 MM A ami 14.50 11.75 0.0
1 MM A joyce 8.50 11.50 0.0
2 MM C lola 9.50 13.25 0.0
3 MM B irma 7.50 6.00 0.0
4 IAI D florence 14.50 13.25 0.0
... ... ... ... ... ... ...
90 MM A james 13.75 12.75 0.0
91 IAI D richard 15.25 7.00 0.0
92 MM A caprice 18.25 15.00 0.0
93 IAI D al 12.50 9.75 0.0
94 MM B constance 3.00 7.00 0.0

95 rows × 6 columns

df.head()
section TD name ET CC FinalNote
0 MM A ami 14.5 11.75 0.0
1 MM A joyce 8.5 11.50 0.0
2 MM C lola 9.5 13.25 0.0
3 MM B irma 7.5 6.00 0.0
4 IAI D florence 14.5 13.25 0.0

Let’s compute the mean#

df["FinalNote"] = 0.7 * df.ET + 0.3 * df.CC
# the axis option alows comptuting the mean over lines or rows
df.head()
section TD name ET CC FinalNote
0 MM A ami 14.5 11.75 13.675
1 MM A joyce 8.5 11.50 9.400
2 MM C lola 9.5 13.25 10.625
3 MM B irma 7.5 6.00 7.050
4 IAI D florence 14.5 13.25 14.125
fig = plt.figure()
df.FinalNote.plot.hist(alpha=0.5, bins=np.arange(1, 20))
plt.show()
../../_images/fa2e36a529abd5ad343fac182ac3c9e86f20f5bbd0a8940f999c8f7bb5a54d84.png

What is the overall mean ?#

df.FinalNote.mean()
10.80657894736842